Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries
نویسندگان
چکیده
We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications.
منابع مشابه
SnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries
Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...
متن کاملAtomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co, and Mn with Li in Layered Lithium Transition- Metal Oxide Cathode Materials
Capacity and voltage fading of layered structured cathode based on lithium transition-metal oxide is closely related to the lattice position and migration behavior of the transition-metal ions. However, it is scarcely clear about the behavior of each of these transition-metal ions in this category of cathode material. We report direct atomic resolution visualization of interatomic layer mixing ...
متن کاملInitial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries
Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...
متن کاملFabrication of (Co,Mn)3O4/rGO Composite for Lithium Ion Battery Anode by a One-Step Hydrothermal Process with H2O2 as Additive
Binary transition metal oxides have been regarded as one of the most promising candidates for high-performance electrodes in energy storage devices, since they can offer high electrochemical activity and high capacity. Rational designing nanosized metal oxide/carbon composite architectures has been proven to be an effective way to improve the electrochemical performance. In this work, the (Co,M...
متن کاملEngineering three-dimensionally electrodeposited Si-on-Ni inverse opal structure for high volumetric capacity Li-ion microbattery anode.
Aiming at improving the volumetric capacity of nanostructured Li-ion battery anode, an electrodeposited Si-on-Ni inverse opal structure has been proposed in the present work. This type of electrode provides three-dimensional bi-continuous pathways for ion/electron transport and high surface area-to-volume ratios, and thus exhibits lower interfacial resistance, but higher effective Li ions diffu...
متن کامل